Density fractionation and C reveal changes in soil carbon following woody encroachment in a desert ecosystem
نویسندگان
چکیده
Woody encroachment has dramatically changed land cover patterns in arid and semiarid systems (drylands) worldwide over the past 150 years. This change is known to influence bulk soil carbon (C) pools, but the implications for dynamics and stability of these pools are not well understood. Working in a Chihuahuan Desert C4 grassland encroached by C3 creosote bush (Larrea tridentata), we used two density fractionation techniques (2 and 7 pool density fractionations) and isotopic analysis to quantify changes in C pools and dynamics among vegetation microsites typical of an encroachment scenario (remnant intact grassland, shrub subcanopies, and in shrub intercanopy spaces within a shrubencroached area). The C concentration of bulk soils varied with microsite, with almost twice the C in shrub subcanopies as in intercanopy spaces or remnant grasslands. Estimated SOC accumulation rates from Larrea encroachment (4.79 g C m year under canopies and 1.75 g C m year when intercanopy losses were taken into account) were lower than reported for higher productivity Prosopis systems, but still represent a potentially large regional C sink. The composition of soil C varied among microsites, with the shrub subcanopy C composed of proportionally more light fraction C (\1.85 g cm) and C that was soluble in sodium polytungstate. Grassland soils contained very little carbonate C compared to shrub subcanopies or shrub intercanopy spaces. Stable isotope analyses indicate that inputs from C3 shrubs were incorporated into all density fractions, even in heavy fractions in which shrub inputs did not change overall C concentration. The seven density fractionation yielded unexpected dC patterns, where the two heaviest fractions were strongly depleted in C, indicating strong fractionation following organic matter inputs. These results suggest that the utility of isotope mixing models for determining input sources may be limited in systems with similar fractionation patterns. We propose a five pool model for dryland soil C that includes a relatively dynamic light fraction, aggregate and heavy fractions that are stable in size but that reflect dynamic inputs and outputs, a potentially large and seasonally dynamic pool of soluble C, and a large pool of carbonate C. Combined, these results suggest that dryland soil C pools may be more dynamic than previously recognized.
منابع مشابه
Controls on soil carbon accumulation during woody plant encroachment: Evidence from physical fractionation, soil respiration, and 13C of respired CO2
Woody plant encroachment into grasslands and savannas is a globally extensive land-cover change that alters biogeochemical processes and frequently results in soil organic carbon (SOC) accrual. We used soil physical fractionation, soil respiration kinetics, and the isotopic composition of soil respiration to investigate microbial degradation of accrued SOC in sandy loam soils along a chronosequ...
متن کاملClimatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland.
The proliferation of woody plants in grasslands over the past 100+ years can alter carbon, nitrogen, and water cycles and influence land surface-atmosphere interactions. Although the majority of organic carbon in these ecosystems resides belowground, there is no consensus on how this change in land cover has affected soil organic carbon (SOC) and total nitrogen (TN) pools. The degree to which d...
متن کاملManaging Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen
High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil n...
متن کاملQuantifying soil surface change in degraded drylands: Shrub encroachment and effects of fire and vegetation removal in a desert grassland
[1] Woody plant encroachment, a worldwide phenomenon, is a major driver of land degradation in desert grasslands. Woody plant encroachment by shrub functional types ultimately leads to the formation of a patchy landscape with fertile shrub patches interspaced with nutrient-depleted bare soil patches. This is considered to be an irreversible process of land and soil degradation. Recent studies h...
متن کاملA Review on Bush Encroachment Effect on Cattle Rearing in Rangelands
Bush encroachment is an increase in woody plant density typically resulting in impenetrable thickets, suppressing palatable grasses and herbs. Moreover, bush encroachment is a globally observed phenomenon. Besides, increasing the density of unpalatable shrubs and trees has reduced the carrying capacity and threatens the sustainability of grazing animal production, especially in arid and semi-ar...
متن کامل